Образование за рубежом

PlayPhrase.me - Учи английский

16.1. Энергия системы зарядов

Найдем сначала выражение для потенциальной энергии системы двух точечных зарядов и , находящихся на расстоянии . Когда заряды удалены друг от друга на бесконечность, они не взаимодействуют. Положим в этом случае их энергию равной нулю. Сблизим заряды на заданное расстояние . При этом мы должны будем совершить работу против электрических сил, которая пойдет на увеличение потенциальной энергии системы. Сближение зарядов можно произвести, приближая к либо к .Работа переноса заряда из бесконечности в точку, удаленную от на

где - потенциал, создаваемый зарядом в той точке, в которую перемещается заряд . Аналогично работа переноса заряда из бесконечности в точку, удаленную от на , равна

где - потенциал, создаваемый зарядом в той точке, в которую перемещается заряд . Значение работ в обоих случаях одинаковы, и каждое из них выражает энергию системы

Для того чтобы в выражение энергии системы оба заряда входили симметрично, запишем его следующим образом:

Эта формула дает энергию системы двух зарядов. Перенесем из бесконечности еще один заряд и поместим его в точку, находящуюся на расстоянии от и от . При этом совершим работу

где - потенциал, создаваемый зарядами и в той точке, в которую мы поместили заряд . В сумме с или работа будет равна энергии трех зарядов:

Последнее выражение можно привести к виду

Добавляя к системе Зарядов последовательно и т.д., можно убедиться в том, что в случае n зарядов потенциальная энергия системы равна

(16.1)

где - потенциал, создаваемый в той точке, где находится , всеми зарядами, кроме i-го.