Образование за рубежом

PlayPhrase.me - Учи английский

4.5 Кинетическая энергия

Рассмотрим случай, когда материальная точка движется из точки 1 в точку 2 под действием приложенных к ней сил (рис.4.4.)


Причем силы, действующие на материальную точку, могут иметь разную природу, т.е. могут быть консервативными и неконсервативными. Уравнение движения в этом случае запишется в виде

(4.6)

где
Перепишем (4.6) в виде

(4.7)

Умножим скалярно уравнение (4.7) на и проинтегрируем от точки1 до точки 2, получим:

(4.8)

Учитываем то, что , и интеграл в правой части выражения (4.8) представляет собой работу всех сил, на участке 1-2, можно записать:

(4.9)

величина

(4.10)

называется кинетической энергией материальной точки. Таким образом, кинетическая энергия материальной точки – это энергия, которой обладает эта точка вследствие своего движения.

Из полученного выражения (4.9) следует, что работа всех сил, действующих на материальную точку на участке траектории 1-2 равна изменению ее кинетической энергии на этом участке.