8.5. Уравнение плоской волны распространяющейся в произвольном направлении

Получим уравнение плоской волны, распространяющейся в направлении, образующем с осями координат х, у, z углы α,β, γ Пусть колебания в плоскости, проходящей через начало координат, имеют вид .

Возьмем волновую поверхность (плоскость), отстоящую от начала координат на расстоянии l. Колебания в этой плоскости будут отставать от колебаний в точке О (рис.8.3) на время тогда уравнение волны

(8.4)

Выразим расстояние l через радиус-вектор точек рассматриваемой поверхности. Для этого введем единичный вектор нормали к волновой поверхности. Скалярное произведение


Подставим значение l в уравнение (8.4) и внесем в скобки

Отношение равно волновому числу k. Вектор равный по модулю волновому числу и имеющий направление вдоль нормали к волновой поверхности называется волновым вектором. Введя вектор , получим

(8.5)

Чтобы перейти от радиуса - вектора точки к ее координатам х, у, z , выразим скалярное произведение через проекции векторов на координатные оси :


Тогда уравнение плоской волны принимает вид:

(8.6)

где

Объявления: